## Discovering Canada Using Latitude and Longitude

Instructions：Using the latitude and longitude coordinates listed below，as well as Google Maps，determine the name of the 11 locations．Write the locations in the spaces provided one letter per space．Transfer the numbered letters to the correspondingly numbered boxes in the＇Final Answer＇spaces below the chart．Also，in point form，include a detailed description of the physical and human characteristics of each location．To view the physical and human characteristics of the location，use the Earth or Street View features on Google Maps．

| Coordinates | Location | Description of Physical and Human Characteristics |
| :---: | :---: | :---: |
| 1．Northernmost Island $81^{\circ} \mathrm{N}, 75^{\circ} \mathrm{W}$ | $\overline{27}-— — —-\overline{14} \overline{18}-$ |  |
| $\begin{array}{\|l} \text { 2. Bay of Water } \\ 60.47^{\circ} \mathrm{N}, 67.38^{\circ} \mathrm{W} \end{array}$ | $--\overline{10}---\quad-\quad$ |  |
| 3．National Park $59.43^{\circ} \mathrm{N}, 112.87^{\circ} \mathrm{W}$ | $\overline{8}-\overline{15}--\overline{25}----\overline{21}$ |  |
| 4．Town $62.80^{\circ} \mathrm{N}, 92.08^{\circ} \mathrm{W}$ | $\overline{23}----\overline{16}----\overline{11}$ |  |
| 5．Body of Water $60^{\circ} \mathrm{N}, 85^{\circ} \mathrm{W}$ | $\overline{7}---\frac{1}{26}---\frac{1}{4}$ |  |
| 6．City $49.87^{\circ} \mathrm{N}, 97.15^{\circ} \mathrm{W}$ | $\overline{1}----\frac{1}{12}-\frac{5}{5}$ |  |
| 7．Island $49.30^{\circ} \mathrm{N}, 63^{\circ} \mathrm{W}$ | $----\frac{\prime}{3}------\frac{1}{2}$ |  |
| 8．Town $47.16^{\circ} \mathrm{N}, 55.15^{\circ} \mathrm{W}$ | $-ー-ー--\frac{13}{13}-\square$ |  |
| 9．National Park $44.37^{\circ} \mathrm{N}, 65.29^{\circ} \mathrm{W}$ | $-\frac{1}{22}---\frac{1}{6}---$ |  |
| $\begin{aligned} & \text { 10. Town } \\ & 52.14^{\circ} \mathrm{N}, 122.14 \mathrm{~W} \end{aligned}$ | －ーーーーーーー－ーー 19 |  |
| 11．Bridge <br> $46.19^{\circ} \mathrm{N}, 63.7^{\circ} \mathrm{W}$ | $\begin{aligned} & ---------\frac{1}{20}--- \\ & -\frac{17}{17}---- \end{aligned}$ |  |

Final Answer．．．

